When Stars Explode

There’s a new supernova in the skies! Last week, students at the University of London Observatory discovered a strange bright spot in nearby galaxy Messier 82 (M82) during a routine observing training session. As undergraduate student Tom Wright put it, “One minute we’re eating pizza then five minutes later we’ve helped to discover a supernova. I couldn’t believe it.”

Words. Image credit UCL/University of London Observatory.
Two images of galaxy M82. The bottom one shows the location of the new supernova, dubbed SN 2014J. The overall galaxy appears dimmer in the bottom picture because the exposure time was shorter, so less light had time to reach the camera. Image from UCL/University of London Observatory.

What’s the big deal about a supernova? Well, to start with, all the elements in the Universe were formed deep inside stars, and spewed out into space through supernova explosions like this one. Take a moment to let that sink in.

This supernova is a special variety called “Type Ia” (type one-A). This means it is caused by a very dense white dwarf star collecting more mass than it can support and eventually going BOOM! We know this because we see signatures of telltale elements like Silicon in the spectrum of the explosion.

Type Ia supernovae are particularly useful because they are all physically very similar—white dwarf stars can only handle so much mass before they explode—so they are all roughly the same brightness. Astronomers love things that are all the same brightness, because they let us determine distances. How? Let’s pretend you’re staring into a huge, dark, empty room containing nothing but a handful of 100-Watt light bulbs. (Not a bad analogy for an astronomer’s life, really…) You’d like to know how far away the light bulbs are, but you don’t have a measuring tape, plus the room is really big. However, you know how much light each bulb is putting out (100 Watts), so you can figure out the ones that look dimmer are actually farther away. We call the 100-Watt light bulbs of the Universe, such as Type Ia supernovae, “standard candles” because they let us determine distance like this.

If you live in the Northern hemisphere and have access to good binoculars or a telescope, you can try seeing SN 2014J for yourself! It is close to peak brightness, and should be visible for another couple of weeks—the blink of an eye from an astronomical perspective.

M82-SN-wide
Look for galaxy M82 with binoculars or a telescope near the dipper portion of the Big Dipper in Northern hemisphere skies. Image from Universe Today.

Even if you can’t spot the supernova in M82, the galaxy itself and neighboring galaxy M81 are a lovely sight. They’re also a great example of how light can be deceiving. The image below shows two images of these galaxies: one taken with visible light (inverted so the galaxies appear dark on a light background), and one taken with radio light. There is all kinds of gas and material connecting the galaxies together that you can’t see with your eye!

words.
Two views of galaxies M81 (the larger one) and M82 (the smaller one above it). These pictures show the same region of space in two different flavors of light. The galaxies appear as two isolated collections of stars in visible light (left), while the multicolor radio image (right) shows gas connecting the galaxies. Observations like these are used to figure out how galaxies have interacted gravitationally in the past. Image from the SEDS Messier Catalog.

What I find particularly mind-boggling is how a galaxy some 12 million light years distant is “nearby” on a cosmic scale. Because light doesn’t travel instantaneously, we are seeing this supernova as it happened 12 million years ago. In contrast, every star in the night sky is located in our own Milky Way galaxy, which is about 100,000 light years across, so the light from these stars (and the planets orbiting them!) is “only” delayed by hundreds or thousands of years, not millions. If the planets in our Solar System are our next-door neighbors, and stars in our galaxy with their own planets are other cities, then M82 is an entirely different country.

I can’t help but wonder… is some alien civilization in our galaxy witnessing this distant explosion just as we are, at this very moment? Are intelligent creatures on a planet we have recently discovered also turning their telescopes to the heavens to study this supernova and learn more about the Universe we share?

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s